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Abstract
The effect of the hydrodynamic interaction on the dynamics of flexible and
rod-like polymers in solution is investigated. The solvent is simulated by the
multi-particle-collision dynamics (MPCD) algorithm, a mesoscale simulation
technique. The dynamics of the solvent is studied and the self-diffusion
coefficient is calculated as a function of the mean free path of a particle.
At small mean free paths, the hydrodynamic interaction strongly influences
the dynamics of the fluid particles. This solvent model is then coupled to
a molecular dynamics simulation algorithm. We obtain excellent agreement
between our simulation results for a flexible polymer and the predictions of
Zimm theory. The study of the translational diffusion coefficient of rod-like
polymers confirms the predicted chain-length dependence. In addition, we
study the influence of shear on the structural properties of rod-like polymers. For
shear rates exceeding the rotational relaxation time, the rod-like molecule aligns
with the shear flow, leading to an orientational symmetry breaking transverse
to the flow direction. The comparison of the obtained shear rate dependencies
with theoretical predictions exhibits significant deviations. The properties of
the orientational tensor and the rotational velocity are discussed in detail as a
function of shear rate.

1. Introduction

The equilibrium and nonequilibrium dynamical behaviour of complex fluids like dilute and
semi-dilute polymer solutions, colloidal suspensions and microemulsions, is strongly affected
by the hydrodynamic interaction. Its adequate inclusion in a theoretical description of such
systems has been a long-standing problem. From a simulation point of view, molecular
dynamics simulations with explicit consideration of solute and solvent take into account
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hydrodynamic interactions. However, most of the simulation time is used to evaluate the
solvent dynamics in great detail, which is not necessary to achieve the proper hydrodynamic
behaviour on the colloidal or polymer length scale.

The large length- and time-scale gap between the solvent molecules and the solute calls
for a coarse-grained and simplified description of the solvent dynamics. This has led to the
development of novel mesoscopic simulation techniques. Prominent examples are lattice
models such as lattice-gas automata [1] and lattice-Boltzmann methods [2–6], and particle
based off-lattice methods such as dissipative particle dynamics [7–10] and multi-particle-
collision dynamics (MPCD) [11–13]. The latter method is also called stochastic rotation
dynamics (SRD) [14] or the Malevanets–Kapral method [15].

A mesoscale simulation technique has to account for the correlated motion of solvent
particles which leads to long-range hydrodynamic interactions. In this dynamic regime,
viscous momentum transport dominates over diffusive transport. A measure for this ratio is
the Schmidt number Sc, which is defined as Sc = ν/D, where ν is the kinematic viscosity and
D the diffusion coefficient. Fluids are characterized by large Schmidt numbers Sc ≈ 102–103

compared to Sc ≈ 1 of gases. Considering colloidal systems, this corresponds to the Stokes
regime, in which the hydrodynamic interaction is typically approximated by the Oseen tensor
(or a similar tensor) in analytical theories [16, 17].

In this paper, we briefly show that the MPCD algorithm is able to account for hydrodynamic
interactions for a proper choice of model parameters like the mean free path of a solvent
particle. As an example, we present results for the dynamics of flexible polymer chains in
dilute solution [17]. In particular, we discuss the dependence of the Rouse mode relaxation
times on the mode number and show that they are in excellent agreement with the predictions
of the Zimm theory [16, 18].

Flow fields strongly affect the conformational properties of flexible polymers. The
orientation and deformation of such molecules have been studied by flow birefringence [19, 20],
light scattering [21, 22] and neutron scattering [23], and have also been investigated by
nonequilibrium molecular dynamics simulations [24–29].

Apart from flexible polymers there is a large class of polymers which assume a rod-like
structure [16]. The physical properties of the latter polymers differ from those of the flexible
ones. One aspect is the large anisotropy of such molecules. Thus, they are much more easily
oriented in an external field, e.g., in shear flow. This enables experimental studies using electric
or magnetic birefringence as a practical tool to study the rotational motion of these polymers.

Theoretical treatment of rod-like polymers is much easier than of flexible polymers, since
rod-like polymers can have only two kinds of motion, i.e. translation and rotation. Various
results are presented in [16]. However, the dynamics of rod-like polymers in dilute solution
is also affected by hydrodynamic interactions, which are not always possible to take properly
into account in analytical theories. Although the influence of hydrodynamic interactions on
the rotational and translational diffusion is weak—there is only a logarithmic correction with
respect to chain length—to our knowledge there is no systematic study on the effect of the
hydrodynamic interaction on, e.g., the orientational tensor and the rotational velocity of rods in
dilute solution under the influence of shear flow. However, various studies indicate a complex
rotational dynamics of rod-like liquid crystals [30–32].

In the following, we will present a systematic study of the dependence of the orientational
tensor on the shear rate of a rod-like polymer in shear flow. Our results partially confirm the
theoretical predictions in [16]. We find, however, also significant deviations in particular in
the flow regime where the rod is oriented by the flow.

The paper is organized as follows. In section 2, the simulation method is described and
the properties of the solvent are discussed in section 3. The equilibrium dynamical properties
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of flexible and rod-like polymers in dilute solution are briefly discussed in sections 4 and 5. In
section 6, the nonequilibrium dynamics of rod-like molecules in shear flow is studied. Finally,
section 7 summarizes our findings.

2. Simulation method

The solvent is described as a system of N , typically 105–106, point-like particles of mass m
moving in continuous space. Depending on the problem under investigation, three-dimensional
periodic boundary conditions are applied, or surfaces are explicitly introduced, combined with
two-dimensional periodic boundary conditions. The MPCD algorithm consists of two steps.
In the streaming step, the particles move ballistically. Hence, their positions (ri , i = 1, . . . , N)
change according to

ri (t + h) = ri (t) + hvi (t), (1)

where vi denotes the velocities of the particle i and h is the time between collisions.
In the collision step, the particles are sorted into cubic cells of lattice constant a. For a

cubic simulation box of side length L, the average number of particles per cell is ρ = Na3/L3.
Then, the velocity of each particle is rotated relative to the centre of mass velocity vcm of all
the particles within that cell according to

vi (t + h) = vcm(t) + R(α)(vi(t) − vcm(t)). (2)

R(α) is the rotation matrix for the rotation by a fixed angle α. The orientation of the rotation axis
is chosen randomly for every collision cell and time step [33, 34]. To insure Galilean invariance
of the simulation scheme, a random shift is applied before every collision step [14, 35]. The
MPCD algorithm conserves mass, energy and momentum for every collision cell, and hence
also globally. There is a H -theorem for the algorithm for large [11] and small mean free
paths [35], and it yields in the first case the correct hydrodynamic equations with an ideal gas
equation of state [11, 36].

A polymer chain is introduced into the system by adding Nm point particles of mass M .
Depending on the considered system, different bond potentials were used.

In order to compare our simulation results with the predictions of the Zimm model, we
used the potential

UR = 3kBT

2l2

Nm−1∑
i=1

(ri+1 − ri )
2 (3)

corresponding to the Rouse model [16]. Here, T is the temperature, kB the Boltzmann constant
and l the root mean square bond length.

In our study of rod-like polymers, we applied the bond potential

US = κS

2

Nm−1∑
i=1

(|ri+1 − ri | − l)2 , (4)

where κS is the spring constant which we chose rather large to avoid stretching of the bonds [37].
To obtain rod-like conformations, the bending potential

UB = κB

Nm−2∑
i=1

(ri+1 − ri)(ri+2 − ri+1) (5)

is employed [38]. The force constant κB is determined in such a way that the mean square
end-to-end distance is 0.98(Nm − 1)2l2.
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Newton’s equations of motion for a chain molecule are integrated by the velocity Verlet
algorithm with the time step h p. To account for the monomer–solvent interaction, the
monomers are included in the collision step equation (2), i.e. in collision cells containing
monomers, the centre of mass is calculated by taking the monomers into account and also
the velocities of the monomers are rotated [39]. The new velocities are used to continue the
integration of the monomer trajectories.

Finally, we introduced dimensionless variables by scaling length and time according to
r̂ = r/a and t̂ = t

√
kBT m/a2, which corresponds to the choice kBT = 1, m = 1 and a = 1.

The mean free path of a solvent particle h
√

kBT/m is then given by λ = ĥ.

3. Solvent dynamics

The solvent mediates the hydrodynamic interaction among solute particles. Hence, the
adequate simulation of the solvent dynamics is essential to achieve the proper behaviour for
particle-based mesoscale simulation techniques. In particular, it is desirable to have control
over the viscosity and the Schmidt number.

The total viscosity η of the MPCD algorithm consists of a kinetic contribution ηkin and a
collisional contribution ηcol for which the approximate analytical expressions

ηkin = kBT hρ

a3

(
5ρ

(4 − 2 cos α − 2 cos 2α)(ρ − 1)
− 1

2

)
, (6)

ηcol = m(1 − cos α)

18ha
(ρ − 1) (7)

have been derived in three dimensions [15, 33–35]. To determine the viscosity (η = ηkin +ηcol)
by simulations, we confined the fluid between two walls and applied an external field to induce
a Poiseuille flow [13, 33, 34, 40]. Periodic boundary conditions are present in the transverse
directions. By using bounce-back boundary conditions at the surfaces, we obtain parabolic
velocity profiles. Exploiting the solution of the Navier–Stokes equation for the Poiseuille flow,
the maximum velocity gives us the fluid viscosity.

Figure 1 displays the kinematic viscosity ν = η/ρ as a function of the rotation angle (left)
and the collision time (right). The figure exhibits very good agreement between the analytical
expression and the simulation results. As is obvious from the figure, for large α and small
collision times the collisional viscosity dominates over the kinetic one. Thus, a large viscosity
is obtained for small h values and large densities (η = ρν) [17].

The presence of the hydrodynamic interaction is reflected in the velocity autocorrelation
function. Assuming molecular chaos and averaging over the random orientations of the
rotational axis, the following expression can be derived from equation (2) for the velocity
autocorrelation function [15, 35] for a particle i

〈vi(nh)vi (0)〉 = (1 − γ )n
〈
v2

i (0)
〉
, (8)

where γ = 2(ρ−1)(1−cos α)/(3ρ) and n is the number of collision steps. Figure 2 depicts the
velocity autocorrelation function for a system of N = 135 000 particles with ρ̂ = 5 particles
per cell on average for the rotation angle α = 130◦. It reveals a qualitative and quantitative
different behaviour of the fluid for the mean free paths λ = 1 and 0.1, respectively. For λ = 1,
the correlation function decays exponentially over several decades and exhibits for large times
a long time tail. This is in agreement with the above theoretical expression, as shown by the
thin dashed line. At short times, the particles exhibit thermal Brownian dynamics, whereas
the hydrodynamic interaction plays a dominant role for larger times. The function (8) yields
a faster decay for the smaller collision times λ = 0.1. However, for the small mean free path,
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Figure 1. Kinematic viscosity for a simple fluid of the MPCD algorithm. The symbols indicate
simulation results and the curves are calculated according to analytical expressions. The dotted
curves represent the collisional contribution (7) and the dashed curves the kinetic contribution (6)
to the total viscosity. The system size is L = 20a. For the dependence of ν on the rotation angle
(left), ĥ = 0.2 and ρ̂ = 10 is used, whereas for the dependence on the collision time (right),
α = 130◦ and ρ̂ = 5 is used.
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Figure 2. Velocity autocorrelation function as a
function of time for the mean free paths λ = 1
and 0.1. The thin dashed lines correspond to the
exponential decay according to equation (8). The
number of fluid particles is ρ̂ = 5 and the rotation
angle is α = 130◦ .

strong correlations build up among the particles that slow down the relaxation and the
correlation function no longer decays exponentially. We attribute these correlations to the
hydrodynamic interaction in the system. The analytical term is now in quantitative agreement
with the simulation results for the first step only. The reason is that the molecular chaos
assumption applies for the initial distribution of velocities [17].

The self-diffusion coefficient follows from the velocity autocorrelation function via the
Green–Kubo relation or can be extracted from the mean square displacement. Starting from
the equation of motion for the fluid, the following expression for the mean square displacement
is obtained by applying the molecular chaos assumption [41]〈
(ri(nh) − ri(0))2〉 = h2

〈
v2

i (0)
〉 (

n

(
2

γ
− 1

)
− 2

1 − γ

γ 2

(
1 − (1 − γ )n

))
. (9)

In the limit n � 1, the mean square displacement is a linear function of n with the diffusion
coefficient

D = h
kBT

m

(
1

γ
− 1

2

)
. (10)

Our simulation results are very well described by equation (9) for λ > 0.6. The velocity
autocorrelation function shown in figure 2 demonstrates that the correlation has decayed
several orders of magnitude before the long-time tail appears. Hence, the latter does not



S3946 R G Winkler et al

Figure 3. Relative difference of the numerically
determined diffusion constant and the theoreti-
cally predicted value according to equation (10)
as a function of collision time. The same param-
eters as in figure 2 are used.

contribute significantly to the diffusion coefficient, which is thus given by equation (10). For
smaller collision times h however, the hydrodynamic interaction yields an increased diffusion
coefficient compared to the theoretical value (10). Figure 3 displays the deviation between the
diffusion constant obtained from the simulation and the theoretical expression (10). Obviously,
the relative difference increases with decreasing h, which reflects the increasing influence of
the hydrodynamic interaction for small collision time steps.

As already pointed out in the introduction, the ratio between hydrodynamic transport
and diffusion is expressed by the Schmidt number Sc = ν/D. Using the expressions of
equations (6), (7), and (10), respectively, we find Sc ≈ 1 for the mean free path λ = 1
and Sc ≈ 10 for λ = 0.1. The comparison of the contributions of the collisional and
kinetic viscosity to the total kinematic viscosity shows that at large mean free paths the kinetic
contribution dominates, whereas at small λ the collisional contribution is dominating. Thus,
we conclude that a collisional viscosity significantly larger than the kinematic one is important
for the observation of hydrodynamic effects. Within the MPCD algorithm, we are able to
adjust the Schmidt number by choosing an appropriate collision time step. A large νcol follows
for small h and since D ∼ h and νcol ∼ 1/h, the Schmidt number exhibits the dependence
Sc ∼ 1/h2 [17].

4. Dynamics of flexible polymers in dilute solution

The dynamics of polymer chains in dilute solution is strongly affected by the hydrodynamic
interaction. Experiments on such systems confirmed the predictions of Zimm theory on flexible
polymers almost quantitatively [16]. Thus, the verification of the dependencies of the centre-
of-mass diffusion coefficient and of the relaxation times on the chain length as well as the
predicted dependence of the relaxation times on the mode number is a stringent test for any
simulation algorithm incorporating hydrodynamic interactions.

To demonstrate the usefulness of the proposed simulation scheme we studied the dynamics
of flexible polymer chains of lengths Nm = 5, 10, 20, 40, 80 and 160 employing the bond
potential (3). The average number of fluid particles per cell was set to ρ̂ = 10, the rotation
angle to α = 150◦, and the mean free path to λ = 0.1. Thus, the collisional viscosity
is larger than the kinetic one. The system size was changed linearly with the radius of
gyration Rg = l

√
(Nm − 1)(Nm + 1)/6Nm to avoid artifacts due to the finite system sizes [42].

Explicitly, for N = 20 we chose a cubic periodic simulation box of length 18a. In addition,
we set the monomer mass to M = 10m. The time step for the integration is ĥ p = 10−2.

To characterize the internal dynamics, we performed a mode analysis in terms of
the eigenfunctions of the discrete Rouse model [16, 43]. The mode amplitudes are
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Figure 4. Correlation functions of the Rouse
mode amplitudes for various modes (1–4).
The chain lengths are Nm = 20 and 40. The
mean free path is λ = 0.1 and the density is
ρ̂ = 10.

calculated according to

χp =
√

2

Nm

Nm∑
i=1

ri cos

[
pπ

Nm

(
i − 1

2

)]
. (11)

Due to hydrodynamic interactions, Rouse modes are no longer eigenfunctions of the chain
molecule. However, within the approximations of the Zimm theory [16, 18], they are reasonable
approximations and the autocorrelation functions of the mode amplitudes decay exponentially,
i.e.

〈
χp(t)χp(0)

〉 = 〈
χ2

p

〉
exp

(−t/τp
)
. For the Rouse model, the relaxation times τp depend

on chain length and mode number according to τp ∼ 1/ sin2 (pπ/Nm), whereas for the Zimm
model the dependence τp ∼ (p/Nm)1/2/ sin2 (pπ/Nm) is obtained. Thus, the calculation of
the relaxation times is a crucial test for the presence of hydrodynamic interactions.

In figure 4 the autocorrelation functions for the mode amplitudes are shown for the mean
free path λ = 0.1. Within the accuracy of our simulations, the correlation functions decay
exponentially and exhibit the scaling behaviour according to the Zimm model. Hence, for
the mean free path λ = 0.1 hydrodynamic interactions are taken into account correctly. We
obtain pure Rouse behaviour [16, 43] without solvent by simply rotating the velocities of the
individual monomers, i.e. without subtraction of the centre-of-mass velocity of each cell in
equation (2). In [42], a correction term to the standard Zimm result has been derived. Such
a correction is not needed to achieve agreement of our data with the predictions of the Zimm
model, nor do our data support the existence of such a term. Hence, we conclude that other
approximations in the derivation of the Zimm results compensate for these corrections [17].

Calculating the centre of mass diffusion constant for various chain lengths, we find the
dependence D ∼ R−1

g [17], where Rg is the root mean square radius of gyration, in agreement
with the prediction of the Zimm theory as well as other mesoscale simulations [39, 44, 45].

A comparison of the centre-of-mass diffusion constant extrapolated to an infinite system
with the value of the Zimm theory shows that the value extracted from simulations is
approximately 20% smaller. Moreover, the relaxation time of the p = 1 mode is only
approximately 30% (Nm = 40) larger than the Zimm value.

Sufficiently long Zimm relaxation times compared to the decay of the velocity
autocorrelation function are required to observe the dynamics in the Stokes regime. Hence,
in the simulation the relaxation times (also for higher modes) should be longer than the time
required to reach the regime where the mean square displacement of the centre of mass of a
polymer becomes linear. To reach this regime we can change the kinematic viscosity of the
fluid, or, since η = ρν, change the fluid density. By choosing ρ̂ = 10, this prerequisite for the
Zimm dynamics is fulfilled in our simulations.
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Figure 5. Centre of mass translational diffusion
constant of rod-like molecules for various chain
lengths. The dots represent simulation results
and the solid curve is calculated according to
the theoretical equation (12). The dashed line
corresponds to D̂G ∼ 1/(Nm − 1).

5. Dynamics of rod-like polymers in dilute solution

The hydrodynamic interaction also affects the equilibrium dynamics of rod-like polymers.
Its influence on the centre of mass translational diffusion coefficient, however, is much less
pronounced. An analytical calculation yields the relation [46]

DG = kBT

3πηLm

[
ln(Lm/b)

L
+ 0.316

]
(12)

(up to the order b/L), where b is the diameter and Lm = (Nm −1)l is the length of the rod [16].
To verify this relation, we performed simulations of single rod-like molecules with up

to Nm = 60 beads and the parameters l = a/2, ĥ = 0.1, α = 150◦, M = 5m, ρ̂ = 5 and
ĥ p = 2 × 10−3. To avoid artifacts in the determination of the chain length dependence due
to finite system size effects, the size of the cubic simulation box is increased linearly with the
length of the rod, where we chose L = 9a for Nm = 10 [42].

Figure 5 shows our simulation results together with the theoretical curve (12), where we
determined D0 = kBT/(3πη) and b by a least squares fit. This procedure yields D̂0 = 0.02,
where the hat indicates that the diffusion constant is expressed in the units introduce at the
end of section 2, and b = 0.84a. D0 is approximately 20% smaller than the value of the
solvent. The deviation is most likely a consequence of the finite system size, because we did
not extrapolate our results to an infinite system. The thickness b is reasonable in size, since
it is close to the bond length and the size of a collision cell. The dashed line corresponds to
a dependence DG ∼ 1/Lm . The simulation results obviously do not follow a simple 1/Lm

dependence, which would be expected for a rod without hydrodynamic interaction, but are
very well described by the theoretically predicted dependence (12). Hence, the hydrodynamic
interaction is once more well captured by the MPCD algorithm.

6. Rod-like polymer in shear flow

To study the stationary state properties of rod-like polymers under shear flow, we used a
three-dimensional periodic system and applied Lees–Edwards boundary conditions along the
y-axis, where the flow velocity field is v = (γ̇ y, 0, 0)T with the shear rate γ̇ [47]. A random
orientation of the unit vector u, pointing along the end-to-end distance of the rod, was chosen
for the initial conformation and Maxwellian distributed velocities were assigned to the mass
points. The temperature was kept constant by scaling the velocities of the fluid particles along
the vorticity direction. The other parameters are the same as for the equilibrium simulations
except for the mass of a monomer which we set to M = 10m and the density of fluid particles
which is ρ̂ = 10. To study the effect of shear flow, we varied the shear rate over more than three
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Figure 6. Orientation angle χ as a function of
the reduced shear rate ξ = γ̇ /Dr . For shear rates
ξ > 5, χ obeys the power law χ ∼ ξ−0.46.

orders of magnitude. The averages presented in the following are obtained by time averages
over trajectories of individual runs and over 103 independent initial conformations.

The systems become anisotropic by the applied shear field. The shear induced deviations
from the equilibrium values are measured by tensorial quantities. Since the director u uniquely
characterizes the orientation of the rod-like molecule, the orientational tensor

Sαβ = 〈
uαuβ

〉 − 1
3δαβ (13)

(α, β ∈ {x, y, z}) can be used to measure the anisotropy of the system [16]. For a rod-like
object, this expression is closely related to the gyration tensor [28]

Gαβ =
Nm∑
i=1

�r i
α�r i

β = G
(
Sαβ + 1

3δαβ

)
, (14)

where �ri = ri − rcm and rcm is the centre of mass position of the polymer. For a rod-like
molecule, the trace of the gyration tensor G = ∑

α Gαα is a constant.
The alignment of the molecule with respect to the flow direction can be quantified by the

flow-alignment angle χ in terms of the orientational tensor via

cot(2χ) = Sxx − Syy

2Sxy
. (15)

Figure 6 presents the orientation angle as a function of shear rate, where ξ = γ̇ /Dr is
the dimensionless shear rate (sometimes called rotational Peclet number) and Dr is the
rotational diffusion coefficient, which is related to the rotational correlation time τr via
τr = 1/2Dr [16]. The analysis of simulations at zero shear rate yields a rotation diffusion
coefficient D̂r ≈ 1.3 × 10−3 (for the finite system). For small shear rates (ξ < 2), χ is close
to π/4, which corresponds to the equilibrium value without flow. With increasing shear rate,
the alignment angle decreases according to the power law χ ∼ ξ−0.46. Simulations of flexible
polymers in shear flow [28] yield almost exactly the same exponent.

In [16], the following expressions are derived for the orientational tensor using a
decoupling approximation

Sxy
(
1 + 1

3ξ Sxy
) = 1

18ξ + 1
6ξ Syy, (16)

Sxx = 2ξ Sxy

9(1 + ξ Sxy/3)
, (17)

Syy = Szz = − 1
2 Sxx . (18)
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Figure 7. Diagonal components of the gyration
tensor (14): Gxx (bullets), G yy (upper triangles)
and Gzz (lower triangles). The solid line is 1/3
of the sum of the individual components. It
demonstrates that the length of the polymer is
constant for the various shear rates.

Figure 8. Components Sxx (bullets), −Syy

(upper triangles) and Sxy (lower triangles) of
the orientational tensor as a function of the
reduced shear rate. The solid lines are calculated
according to ∼ξ and ∼ξ2, respectively, at ξ < 3.
For ξ > 10, the simulation results are well
described by Sxy ∼ ξ−1/4 and Sαα = S∞

αα −
κααξ−1/3 with S∞

xx = 2/3 and S∞
yy = −1/3.

In the appropriate limits, these expressions reduce to

Sxy =




1

18
ξ, ξ 
 1

1

(2ξ)1/3
, ξ � 1,

(19)

Sxx =




1

81
ξ2, ξ 
 1

2

3
− 2

(
2

ξ2

)1/3

, ξ � 1.
(20)

Figure 7 displays the diagonal elements of the gyration tensor. For shear rates ξ < 1, the
systems are isotropic and hence the diagonal components of Gαβ are equal. With increasing
shear rate, the rod-like molecule aligns along the shear flow and Gxx increases. The other
components decrease accordingly. The two components perpendicular to the flow direction,
however, exhibit different shear rate dependencies, in particular, G yy decays much faster than
Gzz . As a consequence, the relations of equation (18) do not apply for ξ > 1. This is also
obvious from figure 8.

Comparing the numerical determined components of the orientational tensor with the
theoretical predictions, we find several deviations. As shown in figure 8 the relation
Syy = Szz = −Sxx/2 is not valid. We rather find that Syy ≈ −2Sxx/3 for small shear
rates. With increasing shear rate, the two curves split.

The comparison of the dependence of Sxx , Syy and Sxy , respectively, on the reduced shear
rate for ξ < 3, yields good agreement with respect to the predicted powers. The numerical
factors, however, are significantly different. For shear rates ξ > 10, the predictions (19)
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Figure 9. Dependence of the orientational tensor
on the shear rate. The straight lines are calculated
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αα| ∼ ξ−1/3, with S∞
xx =

2/3 (bullets) and S∞
yy = −1/3 (triangles).

and (20) do not apply. A least square fit for Sxy yields good agreement with the dependence
Sxy ∼ ξ−1/4. To extract the limiting behaviour of Sxx and Syy at ξ > 10, we performed a least
square fit of these curves with the functions Sαα = S∞

αα − κααξ−1/3 (α ∈ {x, y}). As shown in
figure 8, the simulation data can very well be described by such a dependence. In particular,
we obtain S∞

xx = 2/3 and S∞
yy = −0.35. The first factor agrees with the theoretically predicted

value (20), which is consistent with the fact that Gxx approaches G in the limit ξ → ∞.
S∞

yy = −0.35 is close to the predicted value −1/3, the difference could be a consequence of
statistical uncertainties. Thus, we use S∞

yy = −1/3 for further discussion. Figure 9 shows that
|Sαα − S∞

αα | is well described by the dependence |Sαα − S∞
αα | ∼ ξ−1/3. The component Szz

of the orientational tensor depends on the other two diagonal elements, since the director u is
normalized.

We finally discuss the rotational velocity (ω = (ωx , ωy, ωz)
T) of the rod-like molecule

and its dependence on shear rate. The rotational velocity of a rigid body can be obtained from
the relation L = Θω, where the angular momentum L = (Lx , L y, Lz)

T and the tensor of
inertia Θ, with respect to the centre of mass, are given by

L =
Nm∑
i=1

M�ri × �ṙi , (21)

�αβ =
Nm∑
i=1

M
(
�r2

i δαβ − �r i
α�r i

β

)
. (22)

The rotational velocity with respect to the z-axis is the given by

ωz =
∑

α∈{x,y,z}
�−1

αz Lα. (23)

A relation between the angular momentum, the gyration tensor, and the shear rate can be
established in the following way. When fluctuations are neglected, the velocity in the angular
momentum (21) can be replaced by the local velocity of the flow field (�ṙi ≈ v(ri)). With
v(ri ) = (γ̇�yi, 0, 0)T, the z-component of L becomes then〈

LG
z

〉 = −γ̇ M
〈
G yy

〉
(24)

in terms of the y-component of the gyration tensor. Here we use the symbol LG
z to express its

approximate character and to distinguish it from the expression in terms of the inertia tensor.
On the other hand, if we neglect the off-diagonal elements of the inertia tensor (21) and replace
�zz by its average, we find

〈Lz〉 ≈ 〈�zz〉 ω̄z = M(〈Gxx 〉 +
〈
G yy

〉
)ω̄z . (25)
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Figure 10. Scaled angular momentum −Lz/γ̇ M
(bullets) and G yy of the gyration tensor (triangles)
as a function of shear rate. The line represents the
power law ξ−1/3.
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Figure 11. Rotational velocities according to
the expressions (23) (ωz , upper triangles), (26)
(ω̄z , bullets) and (27) (ωG , lower triangles) as
functions of the shear rate. The solid line at small
shear rates is calculated according toωz = −γ̇ /2.
For large shear rates, the solid line is given by
ωz ∼ −ξ0.6.

The symbol ω̄z again indicates that approximations are involved in its calculation. Combining
equations (24) and (25), the rotational frequencies

ω̄z = 〈Lz〉
M

(〈Gxx 〉 +
〈
G yy

〉) , (26)

ωG = −γ̇

〈
G yy

〉
〈Gxx 〉 +

〈
G yy

〉 (27)

are obtained. The same expressions have been derived in [29]. Since the system is isotropic
for γ̇ → 0, one finds ωG = −γ̇ /2 in this limit.

Figure 10 displays the z-component of the angular momentum (21) in the scaled form
(−Lz/γ̇ M) together with the y-component of the gyration tensor. If the two expressions
agree, equation (24) is valid. Aside from a shift of about 10%, the two expressions indeed
agree very well. The deviations at high shear rates are due to insufficient statistical accuracy.
G yy decays to zero with increasing shear rate, hence a large ensemble is required to obtain
precise results at high shear rates. In particular, the two quantities decrease with increasing
shear rate in a qualitative similar manner. The solid line represents the power law ξ−1/3. This
dependence describes the decay approximately. A somewhat large exponent would describe
the data more closely. However, the factor −1/3 is consistent with the exponent extracted
from the orientational tensor.

The angular velocities are presented in figure 11. We included the values calculated
via equations (23) (ωz), (26) (ω̄z) and (27) (ωG). The magnitude of the angular frequencies
increases with increasing shear rate in agreement with expectation. Like for the curves in
figure 10, the angular frequencies ω̄z and ωG deviate approximately by 10%. Otherwise the
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curves display the same dependence on shear rate. For ξ < 2, the angular velocity decreases
linearly with the shear rate and ωz obeys the equation ωz = −γ̇ /2 as shown by the solid line.
For large shear rates, a second regime appears, where the magnitude of the angular velocity
increases more slowly. The solid line plotted in figure 11 for this regime represents the power
law ξ0.6. This value accounts for the simulation data quite well. The angular velocity ωz

increases somewhat faster than ω̄z with the shear rate for ξ > 10. This is due to different
fluctuations encountered in the calculation of averages. For ω̄z and ωG , mean values for the
angular momentum and the gyration tensor are used, whereas for ω′

z 〈ω〉 = 〈
Θ−1L

〉
is used,

i.e. the product is averaged. Despite this difference, the various angular velocities display
qualitatively the same dependence on shear rate.

7. Summary and conclusions

In this paper we discussed the transport properties of the MPCD algorithm and applied it to
studies of the equilibrium and nonequilibrium dynamics of flexible and rod-like molecules.
We outlined that for the appropriate choice of parameters, i.e. for collision time steps ĥ � 0.1
and rotation angles α > 90◦, collisional transport dominates over kinetic transport and
hydrodynamic interactions are taken into account properly. The scaling behaviour of the
Rouse mode amplitudes of flexible polymers in dilute solutions is a stringent test for the
incorporation of hydrodynamic interactions in a simulation algorithm. Our simulation results
agree excellently with the prediction of the Zimm model. Considering the translational
diffusion constant of a rod-like molecule in dilute solution, we obtain agreement with the
theoretically predicted logarithmic dependence on the chain length. These two examples
confirm our conclusions on the suitability of the MPCD method to simulate complex systems
in a solution based on the results of simple fluids.

In addition, we studied orientational and dynamical properties of rod-like molecules in
shear flow. For shear rates exceeding the rotational relaxation time, the molecule aligns along
the flow direction. The flow-alignment angle decreases with increasing shear according to
a power law. Interestingly, flexible chains in shear flow exhibit the same power law [28]
(within the accuracy of the simulations). The shear induced orientation of the rod leads
to a breakdown of the orientational symmetry in the gradient and vorticity direction. As is
reflected in the gyration tensor, the component along the vorticity direction decays much slower
with shear than the component along the gradient direction. This is in contrast to theoretical
calculations presented in [16]. The decoupling approximation exploited in [16] seems to be
a too crude approximation, in particular at large shear rates. Comparing the theoretically
predicted dependencies of the components of the orientational tensor with the simulation
results, we find the predicted exponents ε of the relation ξε for weak flow rates. The front
factors are, however, rather different. At shear rates above the rotational relaxation time, our
simulations suggest significantly smaller exponents than those predicted by the theory [16].

Considering the angular momentum in the vorticity direction, we confirmed the tight
connection between the angular momentum and the gyration tensor. The ratio (−Lz/γ̇ M
(−Lz/γ̇ M)) decays within 10% deviations similarly to G yy. The magnitude of the rotational
frequency itself increases linearly at small shear rates. In the regime where the molecule is
aligned with respect to the flow direction, the rotational velocity increases much slower. All
of the considered expressions for the angular velocity exhibit the same shear rate dependence
within the accuracy of the simulations.

To overcome the discrepancies between the simulation results and the theoretical
calculations [16], refined analytical calculations are necessary. Such calculations are currently
under way. In addition, it would be useful to perform simulations of longer rods. Since the
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director of the rod uniquely determines its orientation, however, we do not expect a significant
chain length dependence of the predicted dependencies.
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